Verifying the Rust Standard Library

Rahul Kumar, Celina Val, Felipe Monteiro, Michael Tautschnig, Zyad Hassan,
Qinheping Hu, Adrian Palacios, Remi Delmas, Jaisurya Nanduri, Felix Klock,
Justus Adam, Carolyn Zech, and Artem Agvanian

Amazon Web Services, USA
https://aws.amazon.com/

Abstract. The Rust programming language is growing fast and see-
ing increased adoption due to performance and speed-of-development
benefits. It provides strong compile-time guarantees along with blazing
performance and an active community of support. The Rust language
has experienced steady growth in the last few years with a total devel-
oper size of close to 3M developers. Several large projects such as Servo,
TiKV, and the Rust compiler itself are in the millions of lines of code.
Although Rust provides strong safety guarantees for safe code, the story
with unsafe code is incomplete. In this short paper, we motivate the case
for verifying the Rust standard library and how we are approaching this
endeavor. We describe our effort to verify the Rust standard library via
a crowd-sourced verification effort, wherein verifying the Rust standard
library is specified as a set of challenges open to all.

Keywords: Rust - standard library - verification - formal methods - safe
- unsafe - memory safety - correctness - challenge

1 Rust

Rust [9] is a modern programming language designed to enable developers to
efficiently create high performance reliable systems. Rust delivers high perfor-
mance because it does not use a garbage collector. Combined with a powerful
type system that enforces ownership of memory wherein memory can be shared
or mutable, but never both. This helps avoid data-races and memory errors,
thereby reducing the trade-off between high-level safety guarantees and low-level
controls — a highly desired property of programming languages. Unlike C/C++,
the Rust language aims to minimize undefined behavior statically by employing
a strong type system and an extensible ownership model for memory.

The extensible model of ownership relies on the simple (yet difficult) principle
of enforcing that an object can be accessed by multiple aliases/references only
for read purposes. To write to an object, there can only be one reference to it
at any given time. Such a principle in practice eliminates significant amounts of
memory-related errors [3]. In spite of the great benefits in practice, this principle
tends to be restrictive for a certain subset of implementations that are too low-
level or require very specific types of synchronization. As a result, the Rust



2 R. Kumar et al.

language introduced the unsafe keyword. When used, the compiler may not be
able to prove the memory safety rules that are enforced on safe code blocks.
Alias tracking is not performed for raw pointers which can only be used in unsafe
code blocks, which enables developers to perform actions that would be rejected
by the compiler in safe code blocks. This is also referred to as superpowers [5]
of unsafe code blocks. Examples of these superpowers include dereferencing a
raw pointer, calling an unsafe function or method, and accessing fields of unions
etc. A clear side-effect of this choice is that most if not all memory related errors
in the code are due to the unsafe code blocks introduced by the developer.

Rust developers use encapsulation as a common design pattern to mask un-
safe code blocks. The safe abstractions allow unsafe code blocks to be limited
in number and not leak into all parts of the codebase. The Rust standard library
itself has widespread use of unsafe code blocks, with almost 5.5K unsafe func-
tions and 4.8K unsafe code blocks. In the last 3 years, 40 soundness issues have
been filed in the Rust standard library along with 17 reported CVEs, even with
the extensive testing and usage of the library. The onus of proving the safety and
correctness of these unsafe code blocks is on the developers. Some such efforts
have been made, but there is still a lot of ground to cover [7].

Verifying the Rust standard library is important and rewarding along mul-
tiple dimensions such as improving Rust, creating better verification tools, and
enabling a safer ecosystem. Given the size and scope of this exercise, we believe
doing this in isolation would be expensive and counter-productive. Ergo, we be-
lieve that motivating the community and creating a unified crowd-sourced effort
is the desirable method, which we hope to catalyze via our proposed effort.

2 Rust Verification Landscape

A common misconception Rust developers have is that they are producing safe
memory-safe code by simply using Rust as their development language. To
counter this, there have been significant efforts to create tools and techniques
that enable verification of Rust code. Here we list (alphabetically) some tools:

— Creusot [4] is a Rust verifier that also employs deductive-style verification
for safe Rust code. Creusot also introduces Pearlite - a specification lan-
guage for specifying function and loop contracts.

— Gillian-Rust [2]| is a separation logic based hybrid verification tool for
Rust programs with support for unsafe code. Gillian-Rust is also linked
to Creusot, but does in certain cases require manual intervention.

— Kani [10] uses bounded model checking to verify generic memory safety
properties and user specified assertions. Kani supports both unsafe and
safe code, but cannot guarantee unbounded verification in all cases.

— Prusti [1] employs deductive verification to prove functional correctness of
safe Rust code. Specifically, it targets certain type of panics and allows
users to specify properties of interest.

— Verus [8] is an SMT-based tool used to verify Rust code and can support
unsafe in certain situations such as the use of raw pointers and unsafe cells.



